127 Word Ladder
Given two words (beginWordand endWord), and a dictionary's word list, find the length of shortest transformation sequence from beginWord to endWord, such that:
Only one letter can be changed at a time.
Each transformed word must exist in the word list. Note that
beginWordis not a transformed word.
For example,
Given:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log","cog"]As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog", return its length 5.
Note:
Return 0 if there is no such transformation sequence.
All words have the same length.
All words contain only lowercase alphabetic characters.
You may assume no duplicates in the word list.
You may assume
_beginWordand_endWordare non-empty and are not the same.
The Idea: Build a graph. For this graph define a link between two words a and b if difference(a,b) == 1. Do this for every word. Then BFS through this graph, while using a visited map prohibits cyclic roots.
Complexity: O(n^2 * m + n) time where m is length of the word, and n is the number of words. O(n^2 * m) for prepossessing, and then O(n) time for BFS. Space complexity will be O(n^2 + n + n); respectively for the graph itself, the visited set, and queue.
Testing
Python
Last updated
Was this helpful?