Sort a linked list in O(n log n) time using constant space complexity.
The Idea:
Just like regular merge sort, except we have to iterate to the half-way point in the list.
Prev is required, as it always follows that iterslow = prev->next;
ListNode* sortList(ListNode* head)
{
// a list of size 0 or 1 is sorted.
if (!head || !(head->next))
return head;
ListNode *prev = nullptr;
ListNode *iter_fast = head;
ListNode *iter_slow = head;
// split into two halves:
// half1 : head to prev
// half2 : iter_slow to end
while (iter_fast && iter_fast->next) {
prev = iter_slow;
iter_slow = iter_slow->next;
iter_fast = iter_fast->next->next;
}
prev->next = nullptr;
ListNode *l1 = sortList(head);
ListNode *l2 = sortList(iter_slow);
return merge(l1, l2);
}
ListNode* merge(ListNode *head, ListNode *slow)
{
ListNode *newHead = nullptr;
// set up the front of the list
if (head->val < slow->val) {
newHead = head;
head = head->next;
}
else {
newHead = slow;
slow = slow->next;
}
ListNode *newHead_itr = newHead;
// iterate through the end of the shortest list
while (head && slow) {
if (head->val < slow->val) {
newHead_itr->next = head;
head = head->next;
}
else {
newHead_itr->next = slow;
slow = slow->next;
}
newHead_itr = newHead_itr->next;
}
// append the larger list if it exists
if (slow) newHead_itr->next = slow;
else if (head) newHead_itr->next = head;
return newHead;
}