You are given an array x of n positive numbers. You start at point (0,0) and moves x[0] metres to the north, then x[1] metres to the west, x[2] metres to the south, x[3] metres to the east and so on. In other words, after each move your direction changes counter-clockwise.
Write a one-pass algorithm with O(1) extra space to determine, if your path crosses itself, or not.
Example 1:
Given x = [2, 1, 1, 2],
┌───┐
│ │
└───┼──>
│
Return true (self crossing)
Example 2:
Given x = [1, 2, 3, 4],
┌──────┐
│ │
│
│
└────────────>
Return false (not self crossing)
Example 3:
Given x = [1, 1, 1, 1],
┌───┐
│ │
└───┼>
Return true (self crossing)
#include<iostream>#include<vector>#include<algorithm>#include<bitset>usingnamespace std;voidprint1D(vector<int> &nums) {for (auto i : nums) cout << i <<' ';}/* method:- */boolisSelfCrossing(vector<int>& x) {int up, left, down, right =0;int nextUp, nextLeft, nextDown, nextRight =0;int indexCounter =-1;while (indexCounter <=x.size()) { up +=x.at(indexCounter++); left +=x.at(indexCounter++); down +=x.at(indexCounter++); right +=x.at(indexCounter++);if (indexCounter <=x.size()) { } nextUp +=x.at(indexCounter++); nextLeft +=x.at(indexCounter++); nextDown +=x.at(indexCounter++); nextRight +=x.at(indexCounter++); // check intersection of two fieldbox'sif (right >= left || nextUp >= down || nextLeft >= left || nextDown >= down) returnfalse; // test cases passed, update next field box left = nextLeft; down = nextDown; right = nextRight; up = nextUp; }returntrue;}intmain(){ vector<int> test = { 1,1,1,1 };isSelfCrossing(test);print1D(test);}